Irregularity strength of dense graphs

نویسندگان

  • Bill Cuckler
  • Felix Lazebnik
چکیده

Let G be a simple graph of order n with no isolated vertices and no isolated edges. For a positive integer w, an assignment f on G is a function f : E(G) → {1, 2, . . . , w}. For a vertex v, f(v) is defined as the sum f(e) over all edges e of G incident with v. f is called irregular, if all f(v) are distinct. The smallest w for which there exists an irregular assignment on G is called the irregularity strength of G, and it is denoted by s(G). We show that if the minimum degree δ(G) ≥ 10n3/4 log n, then s(G) ≤ 48(n/δ)+6. For these δ, this improves the magnitude of the previous best upper bound of A. Frieze, R.J. Gould, M. Karoński, and F. Pfender by a log n factor. It also provides an affirmative answer to a question of J. Lehel, whether for every α ∈ (0, 1), there exists a constant c = c(α) such that s(G) ≤ c for every graph G of order n with minimum degree δ(G) ≥ (1 − α)n. Specializing the argument for d-regular graphs with d ≥ 104/3n2/3 log n, we prove that s(G) ≤ 48(n/d) + 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

Total vertex irregularity strength of corona product of some graphs

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...

متن کامل

The irregularity strength of circulant graphs

The irregularity strength of a simple graph is the smallest integer k for which there exists a weighting of the edges with positive integers at most k such that all the weighted degrees of the vertices are distinct. In this paper we study the irregularity strength of circulant graphs of degree 4. We find the exact value of the strength for a large family of circulant graphs. © 2005 Elsevier B.V...

متن کامل

The maximal total irregularity of some connected graphs

The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.

متن کامل

The irregularity and total irregularity of Eulerian graphs

For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all ‎connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.

متن کامل

Irregular total labeling of disjoint union of prisms and cycles

We investigate two modifications of the well-known irregularity strength of graphs, namely, a total edge irregularity strength and a total vertex irregularity strength. Recently the bounds and precise values for some families of graphs concerning these parameters have been determined. In this paper, we determine the exact value of the total edge (vertex) irregularity strength for the disjoint u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2008